アクセスカウンター

2024年4月
1234567
891011121314
15161718192021
22232425262728
2930  

金橋先生の論文がCommunications Biologyに受諾

恥骨下角には性差がみられる

金橋先生の論文がCommunications Biologyに受諾されました。

ヒト胎児の骨盤形態の性差はこれまでの報告よりもずっと早く、一次骨化の開始時にすでに明らかであることを、統計学的に示しました。

Kanahashi T, Matsubayashi J, Imai H, Yamada S, Otani H, Takakuwa T. Sexual dimorphism of the human fetal pelvis exists at the onset of primary ossification, Communications Biology, 2024, in press

Human adolescent and adult skeletons exhibit sexual dimorphism in the pelvis. However, the degree of sexual dimorphism of the human pelvis during prenatal development remains unclear. Here, we performed high-resolution magnetic resonance imaging-assisted pelvimetry on 72 human fetuses (males [M]: females [F], 34:38; 21 sites) with crown-rump lengths (CRL) of 50–225 mm (the onset of primary ossification). We used multiple regression analysis to examine sexual dimorphism with CRL as a covariate. Females exhibit significantly smaller pelvic inlet anteroposterior diameters (least squares mean, [F] 8.4 mm vs. [M] 8.8 mm, P = 0.036), larger subpubic angle ([F] 68.1° vs. [M] 64.0°, P = 0.034), and larger distance between the ischial spines relative to the transverse diameters of the greater pelvis than males. Furthermore, the sacral measurements indicate significant sex-CRL interactions. Our study suggests that sexual dimorphism of the human fetal pelvis is already apparent at the onset of primary ossification.

Marieさんの論文がPLos Oneに掲載

Marieさんの論文がPLoS Oneに掲載されました。PLoS Oneは査読が早い印象がありましたが、今回の初回の査読は7ヶ月もかかりました。読んでくれる研究者がみつからなかったのでしょうか。

Saizonou MA, Kitazawa H, Kanahashi T, Yamada S, Takakuwa T, Epithelial development of the urinary collecting system in the human embryo, PLOS ONE 19(4): e0301778. https://doi.org/10.1371/journal.pone.0301778

Abstract

The urinary collecting system (UCS) consists of organized ducts that collect urine from the nephrons and transport it to the ureter and bladder. Understanding the histogenesis of the UCS is critical. Thirty human embryos between the Carnegie stages (CS) 18 and 23 were selected from the Congenital Anomaly Research Center, Kyoto, Japan. Epithelia of the UCS, ureter, and bladder of each sample were randomly selected. Histological findings of the epithelia were analyzed according to the following criteria: type of epithelium, presence or absence of glycogen, percentage of migrated nuclei, percentage of cells in mitosis, and the surrounding mesenchyme. A thickened epithelium lining a narrow luminal cavity was observed in the pre-expanded pelvic specimens at CS18-CS23. At CS23, after pelvic expansion, the UCS showed a thin epithelium with a large luminal cavity mainly located on the early branches, whereas the epithelium covering the subsequent branches had medium thickness. Histological characteristics differed depending on the UCS part and sample stage. The degree of differentiation was evaluated, revealing that in CS18-CS23 pre-expanded pelvis specimens, the undifferentiated epithelium was found in the zeroth to third/fifth generation, whereas at CS23, after pelvic expansion, a differentiated epithelium covered the UCS zeroth to seventh generation. In a comparison of the urothelial epithelium between the UCS, ureter, and bladder, we found that urinary tract differentiation may be initiated in the bladder, followed by the ureter, UCS zeroth to seventh generations, and finally, UCS eighth to end generations. An understanding of the histogenesis of embryonic stage UCS can aid in the clinical management of congenital urinary tract defects and other diseases.

腎臓の高さの左右差についてがCongenital Anomaliesに受諾

腎臓の高さの左右差についてがCongenital Anomaliesに受諾されました。

胚子期の腎臓の上昇、回転についてはこれまでよく知られていましたが、腎臓の高さの左右差については不明でした。本研究では、胚子期に左右腎臓の高さに違いはなく、ともに上昇すること、胎児期初期になると右側が左側よりも高くなることを示しました。胎児期の腎臓上昇の様子は、胚子期とは傾向が異なり別の機序を考える必要があります。

Ishiyama-Takara H, Matsubayashi J, Yamada S, Tetsuya Takakuwa T, Height difference between the right and left metanephroi during early human fetal development, Congenit Anom 2024, in press.

岩佐さんの論文がCongenit Anomに掲載

岩佐さんの錐体筋の形成についての論文がCongenit Anomに受諾されました。雑誌の表紙に採用されました。

錐体筋(PM)と内転筋群

Iwasa Y, Kanahashi T, Imai H, Otani H, Yamada S, Takakuwa T, Pyramidalis muscle formation during human embryonic and early fetal periods, Congenit Anom 2024, 64, 32-39, DOI: 10.1111/cga.12551

錐体筋という腹壁前壁下部にある筋肉の形成について検討しました。

表紙に採用されました。https://doi.org/10.1111/cga.12522

  • 錐体筋は、前腹壁にある一対の小さな三角形の、役割の不明な筋
  • 高分解能磁気共鳴イメージングを用いて、錐体筋がいつ出現したか、その特徴は何かを明らかにすることを目的とした
  • CS18―23までの14個の胚子、59個の胎児(CRL:39.5-185.0mm)を選択した。
  • 錐体筋の形成は胚子期後期(CS20ごろ)にみられ、胎児期初期における錐体筋の頻度、左右差、性差、空間的位置は成体と同様であった。

The pyramidalis muscle (PM) is a paired small triangular muscle of the anterior abdominal wall, the physiological significance of which remains unclear. Recent studies have failed to detect this muscle during the embryonic period. Hence, the present study aimed to determine when PM emerged and reveal its features using high-resolution magnetic resonance imaging. Fourteen embryos between Carnegie stage (CS)18 and CS23 and 59 fetuses (crown-rump length: 39.5–185.0 mm) were selected for this study. The PM was first detected in one of the three samples at CS20. It was detected in five of the seven samples (71.4%) between CS21 and CS23. Forty-eight samples (81.4%) at early fetal period had PMs on both the right and left sides, and three (5.1%) had that only on the right side. Eight samples (13.6%) had no PMs. No side-differences or sexual dimorphisms were detected. The PM length was larger than the width in most samples, although the length/width ratio varied among the samples. The PM/rectus abdominis muscle length and PM/umbilicus-pubic symphysis length ratios were almost constant, irrespective of the crown-rump length. The PM is located ventrally inferior to the rectus abdominis and closer to the medial muscle groups of the lower limb than the rectus abdominis. The present study demonstrated that PM formation occurred in the late embryonic period, and that the frequency, side differences, sex dimorphism, and spatial position of the PM in the early fetal period were similar to those in adults.

磯谷さんの修士論文がAnatomical Recordに受諾

磯谷さんの修士論文がAnatomical Recordに受諾されました。

胎児循環に特有の胎盤から心臓にむかう静脈路(臍帯静脈、門脈洞、静脈管、下大静脈)について、領域による特徴を高解像度デジタルデータ(MRI, CT)から得られた立体再構成像と組織像を用いて検討しました。

  • 胎児循環に特有の胎盤から心臓にむかう静脈路(臍帯静脈、門脈洞、静脈管、下大静脈)について領域ごとの特徴を検討
  • 胚子期から胎児期初期の29個の標本を高解像度デジタル画像化のために選択し、18個の胚を組織学的解析のために選択した。
  • 領域による特徴を高解像度デジタルデータ(MRI, CT)から得られた立体再構成像と組織像を用いて検討し明らかにした。

Isotani N, Kanahashi T, Imai H, Yoneyama A, Yamada S, Takakuwa T. Regional differences in the umbilical vein and ductus venosus at different stages of normal human development. Anat Rec, 2024, in press. DOI:10.1002/ar.25421

During the fetal period, oxygenated blood from the placenta flows through the umbilical vein (UV), portal sinus, ductus venosus (DV), and inferior vena cava (IVC) to the heart. This venous route varies regionally in many aspects. Herein, we sought to characterize the venous route’s morphological features and regional differences during embryonic and early-fetal periods. Twenty-nine specimens were selected for high-resolution digitized imaging; 18 embryos were chosen for histological analysis. The venous route showed a primitive, large, S-shaped curved morphology with regional narrowing and dilation at Carnegie stage (CS) 15. Regional differences in vessel-wall differentiation became apparent from approximately CS20. The vessel wall was poorly developed in most DV parts; local vessel-wall thickness at the inlet was first detected at CS20. The lumen of the venous route changed from a non-uniform shape to a relatively round and uniform morphology after CS21. During the early-fetal period, two large bends were observed around the passage of the umbilical ring and at the inlet of the liver. The length ratio of the extrahepatic UV to the total venous route increased. The sectional area gradually increased during embryonic development, whereas differences in sectional area between the DV, UV, and IVC became more pronounced in the early-fetal period. Furthermore, differences in the sectional area between the narrowest part of the DV and other hepatic veins and the transverse sinus became more pronounced. In summary, the present study described morphological, morphometric, and histological changes in the venous route throughout embryonic and early-fetal development, clarifying regional characteristics.

石田かのんさんの修士論文がCells Tissues Organsに受諾

石田かのんさんの修士論文がCells Tissues Organsに受諾されました。

膝関節の後半月大腿靭帯(pMFL)は、膝関節安定への寄与や円盤状外側半月板(DLM)との関連が報告されていますが、健常な膝におけるその発生過程は調査されていません。本研究では、pMFLの形成について、ラットを対象に、組織切片、EFIC等を用いて検討しました。理学療法学講座の青山先生、谷間先生との共同研究です。

  • EFIC画像から作成した3次元再構成画像を用いて、ラットの膝関節における後半月板靭帯の発達を解析し、他の膝関節構成要素との関係を検討。
  • E16-21日のWistarラット胚の膝関節を対象。
  • pMFLはE17から観察され、成熟ラットと同様にすべての発育段階で大腿骨内側顆と外側半月板に付着
  • pMFLと膝関節周囲の構成要素は、発生初期から位置関係を維持したまま発達していると考えられる。

Ishida K, Ishikawa A, Yamada S, Takakuwa T, Aoyama T, Three-dimensional imaging analysis of the developmental process of posterior meniscofemoral ligaments in rat embryos. Cells Tissues Organs 2024, in press, , DOI: 10.1159/000536108

The posterior meniscofemoral ligament (pMFL) of knee joint is a ligament that runs posterior to the posterior cruciate ligament (PCL) and it is known that the height of the pMFL attachment site causes meniscus avulsion. Therefore, understanding the three-dimensional (3D) structure of the pMFL attachment site is essential to better understand the pathogenesis of meniscus disorders. However, the developmental process of pMFL has not been well investigated. The purpose of this study was to analyze pMFL development in rat knee jointsusing 3D reconstructed images produced from episcopic fluorescence image capture (EFIC) images and examine its relationship with other knee joint components. Knee joints of Wistar rat embryos between embryonic day (E) 16 and E21 were observed with HE stained tissues. Serial EFIC images of the hindlimbs of E17-E21 were respectively captured, from which 3Dimages were reconstructed and the features of pMFL structure: length and angle, were measured. Besides, the chronological volume changes and the volume ratio of the knee joint components compared to E17 were calculated to identify the differences in growth by components. pMFL was observed from E17 and was attached to the medial femoral condyle and lateral meniscus at all developmental stages, as in mature rats. The lack of marked variation in the attachment site and angle of the pMFL with the developmental stage indicates that the pMFL and surrounding knee joint components developed while maintaining their positional relationship from the onset of development. Current results may support to congenital etiology of meniscus disorder.

藤井さんの論文がJ Anatomyに掲載

  • 比較解剖学的研究で哺乳類の気管支樹の基本モデルとして提案されている左右の気管支の対称性が、ヒトの胎児の気管支樹に当てはまるかどうかを検討
  • ヒト成人の気管支分岐構造の原型が胎児期に形成され、維持されることを実証
  • すべての肺葉気管支、B6、B8、B9、および B10 の亜分節気管支の形態および分岐位置は、遺伝的に決定される可能性がある
  • B10 の亜分節気管支以降の末梢枝では個々の胚間に共通の構造は見つからず、この領域での枝形成は遺伝的要因よりも環境的要因により影響されることが示唆された

Fujii S, Muranaka T, Matsubayashi J, Yamada S, Yoneyama A, Takakuwa T. Bronchial tree of the human embryo: Examination based on a mammalian model. J Anatomy 2024, 244, 159-169 http://doi.org/10.1111/joa.13946 .

The symmetry of right and left bronchi, proposed in a previous comparative anatomical study as the basic model of the mammalian bronchial tree, was examined to determine if it applied to the embryonic human bronchial tree. Imaging data of 41 human embryo specimens at Carnegie stage (CS) 16–23 (equivalent to 6–8 weeks after fertilization) belonging to the Kyoto collection were obtained using phase-contrast X-ray computed tomography. Three-dimensional bronchial trees were then reconstructed from these images. Bronchi branching from both main bronchi were labeled as dorsal, ventral, medial, or lateral systems based on the branching position with numbering starting cranially. The length from the tracheal bifurcation to the branching point of the labeled bronchus was measured, and the right-to-left ratio of the same labeled bronchus in both lungs was calculated. In both lungs, the human embryonic bronchial tree showed symmetry with an alternating pattern of dorsal and lateral systems up to segmental bronchus B9 as the basic shape, with a more peripheral variation. This pattern is similar to that described in adult human lungs. Bronchial length increased with the CS in all labeled bronchi, whereas the right-to-left ratio was constant at approximately 1.0. The data demonstrated that the prototype of the human adult bronchial branching structure is formed and maintained in the embryonic stage. The morphology and branching position of all lobar bronchi and B6, B8, B9, and the subsegmental bronchus of B10 may be genetically determined. On the other hand, no common structures between individual embryos were found in the peripheral branches after the subsegmental bronchus of B10, suggesting that branch formation in this region is influenced more by environmental factors than genetic factors.

福井さんの修士論文がJ Anatomyに掲載

福井さんの修士論文がJ Anatomyに受諾されました。ヒト胎児期初期の左房の形成を肺静脈のとりこみと左心耳の形成を中心に解析しました。

  • 23例の胚子期、19例の胎児期初期標本を選択した。
  • 高分解能イメージング(位相CTとMRI)から三次元心臓画像を再構成し、左心耳を含む肺静脈と左心房を形態学的および定量的に評価した。
  • 心臓の背側中膜結合が退縮したとき(CS18以降)、心膜折り返しの位置が2つの肺静脈(右肺静脈と左肺静脈)と4つの肺静脈でほぼ同時に決定された。
  • 左心房のひだが体部と静脈成分の接合部に存在することが確認された。
  • 左心房の肺静脈由来の静脈成分は成長に比例して増加することが示された。肺静脈成分と左心房体との接合部は徐々に目立たなくなったが、観察された初期胎児期の終わりにはまだ認識可能であった。

Fukui N, Toru KanahashiT, MatsubayashiJ, ImaiH, YoneyamaA, OtaniH, YamadaS, Takakuwa T. Morphogenesis of the pulmonary vein and left atrial appendage in human embryos and early fetuses. J Anatomy 2024, 244, 142-158, in press, https://doi.org/10.1111/joa.13941

Abstract

The left atrium wall has several origins, including the body, appendage, septum, atrial–ventricular canal, posterior wall, and venous component. Here, we describe the morphogenesis of left atrium based on high-resolution imaging (phase-contrast X-ray computed tomography and magnetic resonance imaging). Twenty-three human embryos and 19 fetuses were selected for this study. Three-dimensional cardiac images were reconstructed, and the pulmonary veins and left atrium, including the left atrial appendage, were evaluated morphologically and quantitatively. The positions of the pericardial reflections were used as landmarks for the border of the pericardial cavity. The common pulmonary vein was observed in three specimens at Carnegie stage 17–18. The pericardium was detected at the four pulmonary veins (left superior, left inferior, right superior, and right inferior pulmonary veins) at one specimen at Carnegie stage 18 and all larger specimens, except the four samples. Our results suggest that the position of the pericardial reflections was determined at two pulmonary veins (right and left pulmonary vein) and four pulmonary veins almost simultaneously when the dorsal mesocardial connection between the embryo and heart regressed. The magnetic resonance images and reconstructed heart cavity images confirmed that the left atrium folds were present at the junction between the body and venous component. Three-dimensional reconstruction showed that the four pulmonary veins entered the dorsal left atrium tangentially from the lateral to the medial direction. More specifically, the right pulmonary veins entered at a greater angle than the left pulmonary veins. The distance between the superior and inferior pulmonary veins was shorter than that between the left and right pulmonary veins. Three-dimensional reconstruction showed that the venous component increased proportionally with growth. No noticeable differences to discriminate between the right and left parts of the venous component emerged, while the junction between the venous component and body gradually became inconspicuous but was still recognizable by the end of the observed early fetal period. The left superior pulmonary vein had the smallest cross-sectional area and most flattened shape, whereas the other three were similar in area and shape. The left atrial appendage had a large volume in the center and extended to the periphery as a lobe-like structure. The left atrial appendage orifice increased in the area and tended to become flatter with growth. The whole left atrium volume^(1/3) increased almost proportionally with growth, parallel to the whole heart volume. This study provided a three-dimensional and quantitative description of the developmental process of left atrium, comprising the venous component and left atrial appendage formation, from the late embryonic to the early fetal stages.